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Intervention analysis and multiple time series 
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SUMMARY 

A general model is introduced to encapsulate interventions in a rnultiple time series. The 
estimation of this model is discussed, and a bivariate economic example is presented to 
illustrate the methods. 

Some key words: Autoregressive-moving average vector process ; Estimation; Intervention; Time series. 

Quite often decisions are taken or policy changes are effected in different sectors expecting 
some form of change in a set of response variables occurring sometimes in the form of a 
multiple time series. For example, in October 1975 the Federal Government of Canada 
created an Anti-inflation Board hoping to influence a variety of economic variables. Such 
actions, or in general intrusions, to a series, referred to as interventions (Box & Tiao, 1975), 
are expected to affect the time series in some way and it is worthwhile investigating whether 
or not the expected change has materialized. 

An intervention can abruptly change the level of a series or change the level after a short 
delay; it could deflect a series going downward causing it to drift upward or it could cause 
some other form of change. A single intervention can also have different effects on different 
time series. For example, the creation of the Anti-inflation Board in Canada may have 
different effects on the rate of change of the Consumer Price Index, CPI, and on the rate of 
change of wages and salaries; the introduction of an 'electroshock and tranquillizer' on 
schizophrenic patients may have one effect on a psychological variable and another on a 
biochemical variable. The approach adopted here is quite similar to that of Box & Tiao 
(1975) where interventions are considered in a univariate time series. Here we modestly 
extend the results to the multiple time series case where we build a multiple time series 
model which includes the possibilities of the changes of the form expected. 

2 .  A M U L T I P L E  T I M E  S E R I E S  M O D E L  W I T H  I N T E R V E N T I O S S  

2.1. General set-up 

Suppose that, after relevant transformations, the data 2, (t = . . . - 1,0,1,...) are available 
as a vector series observed a t  equispaced time intervals. We then consider the model 

where 2; = (z,,, . . . ,z,,), F' = (f,,. . . , f,), fi(w, X,, t )  is a function of the parameters w, exogenous 
variables X, and time t, and N l =  (n,,, . . .,n,,) stands for noise. 

2.2. Intervention model 

The function fi in (2.1) can allow for the effects of interventions by taking some or all of' 
the exogenous variables to be indicator variables as described below. 



Suppose that k: known interventions occurred in the vector series Z, at  t = TI,...,Tk 
(T, < . .. <T,) and there are no other exogenous variables present. Then the function F can 
be written as F(w ,X,, t )  = R(B)I,, where R(B) is an m x k matrix of rational functions of B 
with elements Rij(B) = Pij(B)/aii(B)(i = 1, ...,m ;j = 1, . . . ,k), B is a backward shift operator 
such that 

Bz, = z,-,, Pii(B) = Pij(0)-Pij(l)B - . . . -Pii(sii) Bs", 

'Xij(B)= 1-aij(l) B - . . .- BTij. 

It is also supposed that Pij(B) has roots outside and aij(B) on or outside the unit circle. 
Further I, is a vector of indicator variables I,' = (I,(T,), ...,I,(T,)), where I,(?) could take the 
form of 'step' or 'pulse' inputs as described in (i) and (ii) respectively, 

0 ( t<?) ,  0 ( t*? ) ,
(ii) I,(?)= 

1 ( t>?) ,  1 ( t = q . ) .  

The step input takes the values zero and one to denote the nonoccurrence and occurrence of 
interventions while the pulse input takes the value one a t  the time of intervention and zeros 
elsewhere. 

2-3. Noise model 

Now we suppose that 4 = Z8,-R(B)I, can be modelled by a mixed autoregressive-moving 
average vector process, 

@(B)4 = @(B)u,, (2.2) 

where @(B) =Im-@,B-@2B2- . . .@,B~,  O(B) = I m - O , B -  ...- O,Bq, Imis the unit 
m x m matrix, 

ere x m parameter matrices, and a; = (a,,, ...,a,,) for t = ... - 1,0,1,... are independent 
and identically distributed vector normal random variables with mean vector zero and 
nonsingular dispersion matrix 2.We require that the parameter space is such that / @(B)/ $. 0, 
and I O(B)19 0 for / B I < 1. The former condition which is also the stationarity condition 
ensures the expansion of the rational matrix function 

for all / B / < 1 and hence 

The second condition, which is the invertibility condition, ensures that O-l(B) @(B) = 

n(B) = I, -2 ni Bi for all I B I < 1 and hence a, = 4-C ni I$-i.The process in (2.2) will be 
referred to as an A R M A V ( ~ , ~ )model. These can be extended to include multiple seasonal 
time series also. Further discussions of them are skipped here to avoid complicated 
notations. 

3. HSTIMATION 

3.1. Maximum likelihood 

Suppose that we have the observational vectors Z,, . . . ,Z,, possibly after differencing to 
get rid of some form of trend. Then the likelihood may be obtained in terms of an m x n 

mailto:=Im-@,B-@2B2-..
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matrix M whose tth column is given by f i  = @-l(B) 0 ( B )  a, which is stationary. Now suppose 
that y is the vector of unknown parameters in a(B), P(B), Q, and 0.Since the stationarity and 
invertibility conditions are satisfied the likelihood of the parameters y and C is proportional 
to the joint density of (a,, ...,a,). The logarithm of the likelihood may be given as 

where C(y) = X a, uj, is the m x m matrix of conditional residual sum of squares and products 
uoriditional on the starting values of f i  and a,, and C-I is the inverse of C. Following Rao 
(1973, pp. 446-9) and Pandit & Wu (1977), approximate maximum likelihood estimates of y 
can be obtained by minimizing 1 C(y)1 .  However, Hillmer & Tiao (1979) have given an 
algorithm to obtain the exact maximum likelihood estimates of the parameters of a multiple 
time series model without the intervention model part in it.  This algorithm can be adapted 
to suit the present case without much difficulty. The resulting estimates will be denoted by 
Q and for large n the variance-covariance matrix of Q can be given as V(Q) = ((lij))-1, where 
zij = a2qy,z)layiayj. 

3.2. Two-stage estimation 

We have seen before that  approximate or exact maximum likelihood estimates can be 
obtained by minimizing or maximizing a nonlinear function of the parameters, which can be 
very difficult if m, the number of time series, or /%,the number of interventions, is large. 
An alternative approach to ease the computations to some extent is outlined below. 

We propose to build a time series model @(B) f i  = 0(B)  a, using the first T - 1 observations, 
where T is the time a t  which the first intervention starts. This model, which does not contain 
the intervention parameters, can be estimated by the methods described previously and the 
minimization or maximization problem here is simpler because the number of parameters is 
smaller. The general model can now be rewritten as 

2,= R(B)I,+6-l(B) @(B) a,, (3.2) 

where the circumflexes imply that the corresponding operators are already estimated. We 
can rewrite (3.2) as 

where x = G-l(B) &(B)Z,, Q(B) = G-l(B) &(B) R(B), and Q(B) contains the unlinown 
intervention parameters. The situation now is quite similar to a multivariate nonlinear 
regression estimation which can be handled. 

For illustration, consider a bivariate time series model with one intervention, and 

Now taking +(B) = G-l(B) &(B),we can write 

When there are n observations (t = 1, .. . ,n) we can write the model corresponding to (3.3) as 
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where 

If the estimated parameter matrices 0,O and C are treated as known, then the model (3.4) 
satisfies the conditions of the generalized least squares with the variance-covariance matrix 
of a being V(a) = Q = (28I)where 8denotes the Kronecker product. Hence conditionally 
on <D, O and C 

p = (X'Q-1 X)-1X' Q-1 Y, v(p)= (XI Q-1X)-l. 

The situation is very similar to  two-stage least squares in econometrics (Theil, 1971, 
pp. 497-500), and it does not seem to be worthwhile repeating the properties of these 
estimators. 

4. EXAMPLE 

The data shown in Fig. l (a)  and (b) are respectively the percentage changes from month 
to month of wages and salaries, z,,, and of the Consumer Price Index, zzt, from February 
1967 to December 1977 for the whole of Canada. We consider the following two events as 
interventions to the bivariate series 2,= (z,,, z,,)' : 
I,(Tl), the price boost in the oil in May 1973 by the Orgnaization of Petroleum Exporting 

Countries, OPEC, 

It(Tz),creation in October 1975 by the Federal Government of Canada of the Anti-inflation 
Board, AIB, to control inflation. 

Time (months) Time (months) 

Fig. 1.  Percentage change from month to month, February 1967-December 1977, in (a) Canadian 
wages and salaries, and (b)Canadian Consumer Price Index. 

Considering the data prior to the first intervention, examining the series zit, (1-B12)zit 
(i = 1,2),  their autocorrelations and cross-correlations, we arrive a t  a model 

(1-B12) Zt = (I-%B)(I-OB12) at, 
where 
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The estimation of the parameters in this model yields 

where the corresponding standard errors are included. The diagnostic checks on the residuals 
revealed no model inadequacy, except that the ninth lag autocorrelation of the residuals 
from the CPI series was found to be larger than twice the approximate standard error. 
This was attributed to chance because no reasonable explanation could be found. Note that 
8,,, 8,, and 8,, are not significantly different from zero and this will be used in the choice 
of the final model. 

One would expect 4(T1) to have no direct effect on z,,; however, i t  might cause a gradual 
increase in the level of z,,. Also, I,(T,) could be expected to lower the levels of both the series. 
Hence we tentatively entertain the model 

2,= R(B)I,+( ( I-BB)(I-OB12)/(1-B12)) at, 
where 

0 (t<May 1973), 0 (t <November 1975), 
w " 2 )  = 

1 (t>May 1973), 1 (t 2 November 1975). 

Maximum likelihood estimation as discussed in § 3 yields 

Under this model OPEC intervention led to a gradual increase in CPI rate; however, the 
AIB intervention lowered the level of CPI rate slightly although i t  did not seem to repair the 
damage caused by the first intervention. The AIB seems to have reduced the level of the 
percentage changes in wages and salaries more significantly. 

The estimated model (4.1) indicates that there is only a one-way relation contrary to the 
usual notion of a two-way relation between 'wages' and 'prices'. Here the CPI seems to be 
leading the wages and salaries but not vice versa. This suggests putting B,, = a,, = 0,, = 0 
and writing the model (4.1) as 

wv = -(O,,B/(l- e,,B))w,t + (1-4 ,B)  (1 -a,, BIZ) a,,, w,, = (1-4,B) (1 -a,, B12)a,,, 
(4.3)

where 
~ ~ ~ = ( l - B ~ ~ ) z ~ ,( i=  l ,2 ) .  

One could consider interventions in (4.3) and i t  was found that this leads to very nearly 
the same estimates. 

Univariate analyses of z,, and z,, were carried out with the same intervention model to 
contrast that with the multivariate analysis done. As expected the CPI series led to the same 



estimates. However, the univariate model for wages and salaries is 

We find here that the impact of the AIB intervention is less significant in the univariate 
analysis than it was in the multivariate analysis. 
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